Math 304 (Spring 2015) - Homework 9

Problem 1.

Find the eigenvalues and eigenvectors of the following matrices.
(a) $\left(\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}3 & -8 \\ 2 & 3\end{array}\right)$
(c) $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 1\end{array}\right)$

Solution:

(a) First solve
$\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}3-\lambda & 2 \\ 4 & 1-\lambda\end{array}\right|=(3-\lambda)(1-\lambda)-8=\lambda^{2}-4 \lambda-5=0$
we get

$$
\lambda=5,-1
$$

When $\lambda=5$, compute the kernel

$$
A-5 I=\left(\begin{array}{cc}
-2 & 2 \\
4 & -4
\end{array}\right)
$$

we find that $v=(1,1)^{T}$ is an eigenvector belonging to $\lambda=5$. Similarly, when $\lambda=-1$, we find $w=(1,-2)^{T}$ is an eigenvector belonging to $\lambda=-1$.
(b) Use the method as in part (a). I skip the details.

Eigenvalues: $\lambda=3+4 i, 3-4 i$.
$v=(2 i, 1)^{T}$ is an eigenvector belonging to $\lambda=3+4 i$.
$w=(-2 i, 1)^{T}$ is an eigenvector belonging to $\lambda=3-4 i$.
(c) Eigenvalues: $\lambda=2,1$.

Eigenvectors:
$v=(1,1,0)^{T}$ is an eigenvector belonging to $\lambda=2$.
$w_{1}=(1,0,0)^{T}$ and $w_{2}=(0,1,-1)^{T}$ are two linearly independent eigenvectors belonging to $\lambda=1$.

Problem 2.

Determine whether the matrix $A=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ is diagonalizable.

Solution: Compute the eigenvalues of A. We find only one eigenvalue $\lambda=1$.
Thus we need to further determine whether there are two linearly independent eigenvectors or not.
Solve for eigenvectors, and we find only one linearly independent eigenvector $v=(1,0)^{T}$. Therefore, A is not diagonalizable.

Problem 3.

In each of the following, write the matrix A as a product $S D S^{-1}$, where D is a diagonal matrix.
(a) $\left(\begin{array}{rr}5 & 6 \\ -2 & -2\end{array}\right)$
(b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
(c) $\left(\begin{array}{rrr}1 & 0 & 0 \\ -2 & 1 & 3 \\ 1 & 1 & -1\end{array}\right)$

Solution:

(a) First, find the eigenvalues and corresponding eigenvectors.

Eigenvalues: $\lambda=2,1$.
Eigenvectors:
$v=(2,-1)^{T}$ is an eigenvector belonging to $\lambda=2$.
$w=(3,-2)^{T}$ is an eigenvector belonging to $\lambda=1$.
Let

$$
S=\left(\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
2 & 3 \\
-1 & -2
\end{array}\right), D=\left(\begin{array}{cc}
2 & 0 \\
0 & 1
\end{array}\right)
$$

Then $A=S D S^{-1}$.
(b) Eigenvalues: $\lambda= \pm 1$.

Eigenvectors:

$v=(1,-1)^{T}$ is an eigenvector belonging to $\lambda=-1$.
$w=(1,1)^{T}$ is an eigenvector belonging to $\lambda=1$.
Let

$$
S=\left(\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right), D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

Then $A=S D S^{-1}$.
(c) Eigenvalues: $\lambda=1,2,-2$.

Eigenvectors:
$v=(-1,1,0)^{T}$ is an eigenvector belonging to $\lambda=1$.
$w=(0,3,1)^{T}$ is an eigenvector belonging to $\lambda=2$.
$u=(0,1,-1)^{T}$ is an eigenvector belonging to $\lambda=-2$.
Let

$$
S=\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v & w & u \\
\mid & \mid & \mid
\end{array}\right)=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 3 & 1 \\
0 & 1 & -1
\end{array}\right), D=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Then $A=S D S^{-1}$.

Problem 4.

Compute e^{A} of the matrix $A=\left(\begin{array}{cc}3 & 4 \\ -2 & -3\end{array}\right)$.

Solution: Eigenvalues: $\lambda= \pm 1$.
Eigenvectors:
$v=(2,-1)^{T}$ is an eigenvector belonging to $\lambda=1$.
$w=(1,-1)^{T}$ is an eigenvector belonging to $\lambda=-1$.
Let

$$
S=\left(\begin{array}{cc}
\mid & \mid \\
v & w \\
\mid & \mid
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right), D=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Then $A=S D S^{-1}$. It follows that

$$
\begin{aligned}
e^{A}=S e^{D} S^{-1} & =\left(\begin{array}{cc}
2 & 1 \\
-1 & -1
\end{array}\right)\left(\begin{array}{cc}
e & 0 \\
0 & e^{-1}
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 e-e^{-1} & 2 e-2 e^{-1} \\
-e+e^{-1} & -e+2 e^{-1}
\end{array}\right)
\end{aligned}
$$

Problem 5.

Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{cc}2 & 1-i \\ 1+i & 1\end{array}\right)$.

Solution: Eigenvalues: $\lambda=0,3$.
Eigenvectors:
$v=\binom{1-i}{-2}$ is an eigenvector belonging to $\lambda=0$.
$w=\binom{1-i}{1}$ is an eigenvector belonging to $\lambda=3$.

